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Giant Larvacean Houses:
Rapid Carbon Transport to

the Deep Sea Floor
Bruce H. Robison,* Kim R. Reisenbichler, Rob E. Sherlock

An unresolved issue in ocean science is the discrepancy between the food
requirements of the animals living on the deep sea floor and their food supply, as
measured by sediment traps. A 10-year time-series study of the water column off
Monterey Bay, California, revealed that the discarded mucus feeding structures of
giant larvaceans carry a substantial portion of the upper ocean’s productivity to
the deep seabed. These abundant, rapidly sinking, carbon-rich vectors are not
detected by conventional sampling methods and thus have not been included in
calculations of vertical nutrient flux or in oceanic carbon budgets.

Most deep benthic communities are supplied

with food by a process described more than a

century ago as a Brain of detritus[ (1). The

vertical flux of organic carbon in small par-

ticles, fecal pellets, and aggregates of marine

snow is typically measured by sediment traps

(2). Most of the particles that reach the deep

sea floor are less than 5 mm in size, sink

slowly, and have organic carbon levels that are

reduced by microbial mineralization during

their descent, which may last for months (3, 4).

Pulses of small particle flux are coupled to

surface productivity (5–7). In studies of the

relationship between organic carbon flux and

the nutritional requirements of the deep ben-

thic fauna, there is a discrepancy between the

amount of food used by these animals and

what can be accounted for by sediment traps

on the supply side (8–10). This gap may be

linked to declines in productivity that have

accompanied the recent warming of the upper

ocean (9, 11–13). A number of secondary

sources have been suggested that might make

up the difference between supply and demand,

including carrion falls, pulses of phytodetritus,

and lateral transport from continental shelves

(9, 14–16). All of these probably contribute to

the deep benthic food supply, but none have

been shown to occur in sufficient quantity or

with the consistency necessary to compensate

for the disparity.

Here we discuss a class of particles consist-

ing of the large, discarded feeding structures

of giant mesopelagic larvaceans (appendic-

ularians). These planktonic tunicates feed

on suspended particles by secreting intricate

filtration structures made of mucopolysac-

charides (Fig. 1A), through which they pump

water by beating their tails (17 ). An active

filter structure is called a Bhouse[ because the

animal lives inside it. Typically, each house

has two nested filters: a coarse outer mesh and

a fine-mesh inner structure. Giant larvaceans

attain lengths up to 60 mm, and their houses

are frequently greater than a meter in diameter

(17, 18).

The first giant larvacean identified, Bath-

ochordaeus charon, was discovered in 1898,

but their feeding structures were unknown

until the 1960s, when they were observed

during submersible dives (18). Subsequently,

giant larvacean houses have been reported by

observers using undersea vehicles in the

eastern and western Pacific and in the Atlantic

(17, 19, 20). These large houses are very frag-

ile and do not survive capture by plankton

nets. As a consequence, their potential con-

tribution to vertical carbon flux was not recog-

nized until they were observed in situ (21).

Larvacean houses are disposable, and when

one becomes clogged with particles, the

animal simply discards it and makes another.

The structures collapse when water is no

longer pumped through them (Fig. 1B). Once

abandoned, they sink rapidly to the sea floor at

a rate of È800 m dayj1 (17). At this rate,

there is little time for mineralization by

microbes. Discarded houses have not been

accounted for by conventional methods for

sampling sinking detritus (22), and thus their

contribution to nutrient flux has not been

factored into oceanic carbon budgets (23).

We used remotely operated vehicles (ROVs)

to measure the abundance of both occupied and

discarded giant larvacean houses (called

Bsinkers[) and to collect them for chemical

analyses. Abundance was measured by quantita-

tive video transects at 100-m depth intervals,

down to 1000 m, on about a monthly basis from

1994 through 2003. By calibrating a camera to

record a measured area and then measuring the

distance traveled during each transect, we were

able to examine a known volume of water at

each depth (24).

Samples for chemical analysis were col-

lected with specialized samplers by skilled

pilots, who carefully positioned the open con-

tainers around the delicate sinkers, then gently

sealed them inside. Because the sinkers are so

very easily fragmented and dispersed, only

about 1 in 4 of our collection attempts was

successful, and it is easy to see how sediment

traps have missed them (25). As the sinkers

descend, hydrodynamic forces shape them into

increasingly compact forms (Fig. 1C); never-

theless, they remain easily disrupted by me-

chanical contact.

We surveyed the water column at three

sites along the axis of the Monterey Canyon,

off the California coast. These direct observa-

tions revealed a distinct class of large sinking

aggregates, clearly derived from giant larva-

cean houses. The midwater fauna off Monterey

Bay contains at least three giant larvacean spe-

cies, each with a characteristic depth range and

a large (930 cm in diameter), distinctive house

(26–28). The abundance of occupied houses

and sinkers varied seasonally and interannu-

ally, but both were present year-round (Fig. 2).

Estimates of the house-production rate of

Bathochordaeus range from one per day (16)

to one per month (17). On the basis of our

counts of occupied houses, sinkers, and their

sinking rate, we calculate that Bathochordaeus

produces a new house every day (24) (Fig. 3).

Sinkers are commonly observed during dives

along the floor of the Canyon, with densities as

Monterey Bay Aquarium Research Institute, 7700
Sandholdt Road, Moss Landing, CA 95039, USA.
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high as 1 sinker per m2 (17). Over the 10-year

span of this study, the average flux of sinkers

to the sea floor was 3.9 mj2 dayj1. We mea-

sured the particulate organic carbon (POC) and

dissolved organic carbon content of 105 sinker

samples, collected over a 2-year period at

depths from 200 m to 2979 m (24). The av-

erage of total organic carbon was 5.4 mg, and

the average C:N ratio was 6.09.

When we calculate nutrient flux by multi-

plying the average organic carbon content of a

sinker by the number reaching the bottom each

year, we get a rate of 7.6 g of C mj2 yearj1

(Fig. 2). Data from sediment traps deployed in

the same region as our dive sites have shown

annual carbon flux rates from 14.4 to 24.0 g of

C mj2 yearj1 at depths around 500 m and

from 7.2 to 14.4 g of C mj2 yearj1 at sea-

floor depths (16, 29–31). Our calculations of

sinker carbon flux are conservative because

(i) we undercounted the number of deep

sinkers, which are more compact, sink faster,

and thus are less likely to be seen; (ii) our

sampling was biased toward smaller speci-

mens, because large sinkers did not fit into

our samplers; and (iii) we did not count sink-

ers that had fragmented naturally. Although

the measured flux of sinker carbon was var-

iable, the changes did not appear to be closely

linked to gross primary production, tempera-

ture, or season (32) (Fig. 2).

The discarded houses of giant larvaceans

thus compose a distinct class of sinking

particles that provide a substantial portion of

the vertical carbon flux in the deep water col-

umn. This is the case off Monterey Bay and

probably elsewhere as well. The balance of

POC supply and demand measured by Smith

and Kaufmann (9) at a deep benthic station

off central California ranged from occasional

surpluses to extended discrepancies of 8 mg

of C mj2 dayj1 or more over 7 years. In

Monterey Canyon, the daily average of carbon

transport by sinking larvacean houses was

more than enough to close this gap. Present-

day models of carbon flux through the deep

water column predict that only È10% of the

POC that sinks below 100 m reaches depths

beyond 1000 m (33). Our results reveal a

pathway through this region that carries subs-

tantially more carbon than has been mea-

sured by conventional methods. Carbon that

reaches the deep sea floor is effectively re-

moved from the atmosphere for geological

time scales (33).
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Rapid Acidification of the Ocean
During the Paleocene-Eocene

Thermal Maximum
James C. Zachos,1* Ursula Röhl,2 Stephen A. Schellenberg,3

Appy Sluijs,4 David A. Hodell,6 Daniel C. Kelly,7 Ellen Thomas,8,9

Micah Nicolo,10 Isabella Raffi,11 Lucas J. Lourens,5

Heather McCarren,1 Dick Kroon12

The Paleocene-Eocene thermal maximum (PETM) has been attributed to the
rapid release of È2000 � 109 metric tons of carbon in the form of methane. In
theory, oxidation and ocean absorption of this carbon should have lowered
deep-sea pH, thereby triggering a rapid (G10,000-year) shoaling of the calcite
compensation depth (CCD), followed by gradual recovery. Here we present
geochemical data from five new South Atlantic deep-sea sections that
constrain the timing and extent of massive sea-floor carbonate dissolution
coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers
water depth, are marked by a prominent clay layer, the character of which
indicates that the CCD shoaled rapidly (G10,000 years) by more than 2
kilometers and recovered gradually (9100,000 years). These findings indicate
that a large mass of carbon (d2000 � 109 metric tons of carbon) dissolved in
the ocean at the Paleocene-Eocene boundary and that permanent seques-
tration of this carbon occurred through silicate weathering feedback.

During the Paleocene-Eocene thermal maxi-

mum (PETM), sea surface temperature (SST)

rose by 5-C in the tropics and as much as 9-C
at high latitudes (1–3), whereas bottom-water

temperatures increased by 4- to 5-C (4). The

initial SST rise was rapid, on the order of È103

years, although the full extent of warming was

not reached until some È30,000 years (30 ky)

Fig. 3. Comparative plot of active
houses of giant larvaceans (blue
line) and discarded sinkers (red
line) versus depth, in square meters
of area swept. The data are derived
from a 10-year time series of
quantitative video transects at
depth intervals between 100 and
1000 m (n 0 679 transects). With
an average sinking rate of 800 m
dayj1, the difference between
the integrated areas beneath the
curves indicates that these ani-
mals produce a new house each
day (24).
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